|
An LED lamp is a light-emitting diode (LED) product that is assembled into a ''lamp'' (or ''light bulb'') for use in lighting fixtures. LED lamps have a lifespan and electrical efficiency that is several times better than incandescent lamps, and significantly better than most fluorescent lamps, with some chips able to emit more than 100 lumens per watt. The LED lamp market is projected to grow by more than twelve-fold over the next decade, from $2 billion in the beginning of 2014 to $25 billion in 2023, a compound annual growth rate (CAGR) of 25%.〔Jacques, Carole (28 January 2014) (LED Lighting Market to Grow Over 12-Fold to $25 Billion in 2023 ), Lux Research〕 Like incandescent lamps and unlike most fluorescent lamps (e.g. tubes and compact fluorescent lamps or CFLs), LEDs come to full brightness without need for a warm-up time; the life of fluorescent lighting is also reduced by frequent switching on and off. The initial cost of LED is usually higher. Degradation of LED dye and packaging materials reduces light output to some extent over time. Some LED lamps are made to be a directly compatible drop-in replacement for incandescent or fluorescent lamps. An LED lamp packaging may show the lumen output, power consumption in watts, color temperature in kelvins or description (e.g. "warm white"), operating temperature range, and sometimes the equivalent wattage of an incandescent lamp of similar luminous output. Most LEDs do not emit light in all directions, and their directional characteristics affect the design of lamps, although omnidirectional lamps which radiate light over a 360° angle are becoming more common. The light output of single LED is less than that of incandescent and compact fluorescent lamps; in most applications multiple LEDs are used to form a lamp, although high-power versions (see below) are becoming available. LED chips need controlled direct current (DC) electrical power; an appropriate circuit is required to convert alternating current from the supply to the regulated low voltage direct current used by the LEDs. LEDs are adversely affected by high temperature, so LED lamps typically include heat dissipation elements such as heat sinks and cooling fins. ==Technology overview== General-purpose lighting needs white light. LEDs emit light in a very narrow band of wavelengths, emitting light of a color characteristic of the energy bandgap of the semiconductor material used to make the LED. To emit white light from LEDs requires either mixing light from red, green, and blue LEDs, or using a phosphor to convert some of the light to other colors. One method (RGB or trichromatic white LEDs) uses multiple LED chips, each emitting a different wavelength, in close proximity to generate white light. This allows the intensity of each LED to be adjusted to change the overall color. The second method uses LEDs in conjunction with a phosphor. The CRI (color rendering index) value can range from less than 70 to over 90, and color temperatures in the range of 2700 K (matching incandescent lamps) up to 7000 K are available. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「LED lamp」の詳細全文を読む スポンサード リンク
|